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Nonlinear internal gravity waves in an inviscid incompressible fluid are discussed 
for the case when the properties of the medium vary slowly on a scale determined 
by the local wave structure. A two-time-scale technique is used to  obtain 
transport equations which describe the slowly varying modulations of the waves. 
Various solutions of these transport equations are discussed. 

1. Introduction 
Internal gravity waves are an important feature of the dynamics of the ocean 

and of the atmosphere; Phillips (1969, 3 5.1) has documented observations 
made in the ocean, while Bretherton (1966) has done likewise for the atmosphere. 
For an inviscid incompressible fluid with constant Brunt-Vaisala frequency the 
linearized equations of motion have plane wave solutions whose properties are 
well known (Phillips 1969, 8 5.4; Bretherton 1969). When the Brunt-Vaisalii 
frequency is not constant but is slowly varying with respect to the wavelength, 
and also when there is a mean flow, similarly slowly varying, the waves may be 
regarded as having a local structure determined by the plane wave solution 
while the wave parameters vary slowly on a scaIe determined by the non- 
uniform background. For linearized internal gravity waves this approach has 
been used by Bretherton (1966) and Garrett (1968). 

In  this paper we shall consider nonlinear internal gravity waves. As the fluid 
is incompressible these are transverse, sinusoidal and identical to the linearized 
solutions, with the important exception that there is now a wave-induced mean 
flow proportional to the square of the wave amplitude. The purpose of this 
paper is to study slowly varying modulations of these waves; to this end we use 
the familiar two-time-scale technique (Whitham 1970). The local structure of the 
wave is assumed to be described by the nonlinear plane wave solution while the 
wave frequency, wavenumber, amplitude and the mean flow vary on the time 
and length scales associated with the equilibrium density stratification. This 
approach has also been used by Drazin (1969) and Rarity (1969); however, both 
these authors omitted the nonlinear contribution to  the mean flow. Bretherton 
(1969) also considered nonlinear waves; he used a perturbation expansion in 
the wave amplitude and obtained results correct to the second order in the wave 
amplitude. To this order his results agree with ours. To find the transport 
equations which govern the modulations we use an averaged variational principle 
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(see Whitham 1970). It will be shown that these equations consist of the local 
dispersion relation, corrected for the Doppler effect due to the mean flow, an 
equation for conservation of wave action, and a set of equations which govern 
the mean vorticity production associated with the mean flow. 

In  $ 2  the equations of motion are formulated as the Euler equations of a 
certain variational principle, using the Clebsch transformation. In  $ 3 the non- 
linear plane wave solution (for constant Brunt-VaisalB frequency) is derived. 
In  $4 the transport equations which govern slowly varying modulations are 
obtained from an averaged variational principle. In  $ 5 various solutions of these 
transport equations are discussed. In  $ 5  5.1 and 5.2 modulations which depend 
on the vertical co-ordinate and the time alone are considered and the results 
are used to discuss the mechanism of critical-layer absorption. These results are 
identical to those obtained in the linearized theory, except when it is also assumed 
that there are no horizontal pressure gradients. In $ 5.3 two-dimensional modula- 
tions are briefly discussed. In  $ 5.4 small amplitude three-dimensional modula- 
tions are discussed and it is shown that the wave is unstable to certain horizontal 
modulations, perpendicular to  the wavenumber vector. 

2. The equations of motion and the Clebsch transformation 

motion are 
Assuming that the fluid is incompressible and inviscid, the equations of 

v . v  = 0, (2.1) 

appt = 0, (2.2) 

(2.3) p dvldt + V p  +pVx = 0, 

where v is the velocity of the fluid particle which is at x at time t, p is its density, 
p is the pressure and x is the gravitational potential gz. The first task is to recast 
these equations using the Clebsch transformation (see Lamb (1932, $ 167)) where 
the barotropic case is discussed). Let the fluid particle which will be at the level 
z at time t be at the level zo at the initial time t = 0. In the initial state let 

P = Po(z0) .  (2.4) 

Then (2.2) implies that (2.4) holds for all subsequent times t. 
If po(zo) is defined so that 

dPOIdZ0 = -gPo(zo) (2 .5 )  

dwldt = W . V U + V ( P - P ~ )  x V(i/po), (2.6) 
where w = v x v .  (2.7) 

wo = vy X vs. (2.8) 

the vorticity equation is 

Let the initial vorticity w0 be given by the Clebsch representation? 

t Equation (2.8) is, in general, valid only locally; if the vortex lines associated with 
wo are sufficiently knotted, then further potentials, analogous to y and S must be added to 
(2.8), cf. Bretherton (1970) and Moffatt (1969). 
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Then (2.6) may be integrated with respect to time along the particle paths to  give 

w = V y x V 6 s V  (2.9) 

and so 

On introducing the change of variables 

9 = $-Pa, 

(2.10) 

(2.11) 

(2.12) 

a = xo-z, (2.13) 

we find that v = V++aV@-@k+yVS, (2.14) 

where k is a unit vector in the x direction. Substitution into (2.3) then gives 

(13 -130)lPo = ga - {+t + aPt+YSt + Blvl”. (2.15) 

Also, (2.12) and (2.13) may be replaced by 

(2.16) 

dccldt = - w, (2.17) 

where w = v.  k is the z component of velocity, while y and 6, being constant 
along particle paths, are given by 

dy/dt = 0, (2.18) 

dS/dt = 0. (2.19) 

The equations of motion are now (2.1) and (2.14)-(2.19), zo being given by 
(2.13). Although these equations have the disadvantage that the representation 
(2.14) for the velocity is nonlinear, they have the compensating advantages 
that the pressure perturbation is given explicitly by (2.15) and that the vorticity 
is described by the potentials y and 6, representing the initial vorticity, and by 
the potentials a and@, representing the production of vorticity due to the density 
stratification. It may be noted that a is the vertical displacement of a fluid 
particle. Also, in the present context, these equations have the advantage that 
they are the Euler equations of the variational principle (see Seliger & Whitham 
1968) 

6 p d x d t = O ,  (2.20) s 
where it is understood that p is given by (2.16) and v by (2.14). Indeed the 
variation of 9 gives (2.1), the variation of a and of /3 give (2.16) and (2.17) 
respectively, and the variation of y and of S give (2.19) and (2.18) respectively. 

The arguments of subsequent sections will be clarified by the introduction of 
a small parameter c characterizing the slow variation of the density stratification. 

13-2 
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Thus we introduce a length scale L characterizing a typical wavelength and a time 
scale N;l defined by 

Na=-”dp”l . (2.21) 
Pod20 zo=o 

No is the Brunt-VBisala frequency at the level z,, = 0. Dimensionless variables 
based on the length scale L, time scale N;l,  a velocity scale No L and a pressure 
scale gL are now introduced. In  addition we put 

so that 
and 

(2.22) 

(2.23) 
(2.24) 

where zo is now a dimensionless variable, a prime denotes differentiation with 
respect to q,, and 

6 = N ;  L/g (2.25) 

is a small pammeter. Thus po,  po and N2 are all functions of ezo, i.e. of e(z  + a) ,  
and are slowly varying. 

The equations of motion become 

v = vq5 f avp - pk i- yV6, (2.26) 
daldt = - w, (2.27) 

d p p t  = - PN2, (2.28) 

(2.29) 
(P-Po)/Po = 2‘ = a-e&, Q = $t+@t+7Jt+alV127 (2.30) 

together with (2.1). In  the limit e --f 0, we see that in (2.28) P is replaced by a: 
and N 2  is replaced by a constant. We shall refer to this limit as the Boussinesq 
approximation since it involves the neglect of the inertial contribution to the 
pressure compared with the buoyancy contribution. However, it may be noted 
that the Boussinesq approximation is also widely used in situations where the 
density stratification is not slowly varying. In  $ 3  4 and 5 we shall consider mean 
flows which also vary slowly on a length scale e-l; the Richardson number, being 
the ratio of N 2  to the square of the rate of shear, is then of O(C-~).  

dyldt = d6/dt = 0, 

3. Plane waves 

Thus we put 
Allowing e -+ 0, we seek a plane wave solution to the equations of motion. 

v = V+$(O), (3.1) 

a = &(O), (3.2) 

where 
(3.3) 

(3.4) 

G-, & and pare periodic functions of the phase 0 of period 271. and have zero mean, 
so that (v) = V and (/I> = B are constants, where () denotes an average with 
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respect to 8 over 27r; it may be shown that (a) = 0. w is the frequency and K, 

with components (1, m, n), is the wavenumber vector. Without loss of generality 
we may put y = 6 = 0 in this section. The solution for q5 consistent with (3.1) is 

so that 
and 

Equations (3.6) and (3.7) may be regarded as determining $ and II respectively. 
Substitution of (3.1) into (2.1) yields 

so that 
9.u = 0,  

8 = /?(nK/K2 - k), 

where K = I K I .  Equation (3.8) implies that 

where 
(3.10) 
(3.11) 

is the intrinsic frequency, i.e. the frequency in a medium at rest relative to the 
wave. Thus (3.8) ensures that the nonlinear terms in the equations of motion 
(for e-+ 0)  areidentically zero and the plane wave solution is exactly that obtained 
from the linearized equations, with the exception that V contains the nonlinear 
term (~2/?~). Equation (2.27), when averaged with respect to 8, shows that 

V . k  = 0, (3.12) 

and so the mean velocity V is horizontal. Equation (3.12) may be regarded as 
determining B. Also, (2.28), when averaged with respect to 8, confirms that 
(a )  = 0. Finally (2.27) and (2.28) imply that 

and 

6i = asin8, 
p = - (aN2/w') cos 8 

= N2( I - n2/K2). 

(3.13) 
(3.14) 
(3.15) 

a is the amplitude and (3.15) is the familiar dispersion relation for internal 
gravity waves. These results agree with those of Rarity (1969) and Drazin (1969), 
except that both these authors neglected the mean velocity V. For a plane wave 
this is legitimate as a constant mean velocity can be removed by a Galilean 
transformation; however it is essential to include V when considering modulated 
waves. Here we have 

v = III,+u, (3.16) 
where u = K H s / p O  (3.17) 
and F = b / w ' ,  & = +po N2a2. (3.18) 

A subscript H denotes the horizontal component. F is the wave action density 
(Bretherton & Garrett 1969; Garrett 1968) and d is the wave energy density.j- 

f The energy density is c($polv12+T), where ET = p,(ez) -p,,(ez,,) - apo(ez~)  is the poten- 
tial energylunit volume due to the dispIacement of a fluid particle from the level z,, to z ;  
T = +poN2a2+O(a)  and the wave average of the energy density is e ( 6 + O ( e 2 ) ) .  
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The group velocity c is defined as V,w' and is given by 

N2n n K  c = (2 - k) . (3.19) 

Thus the group velocity is in the plane of k and K and is perpendicular to  K. 

As w' + 0, the wavenumber vector approaches the vertical and c becomes finite 
and horizontal. As w' -+ N the wavenumber vector approaches the horizontal 
and c tends to zero. 

4. Modulated waves 
If B is small, but non-zero, then plane wave solutions are no longer possible. 

However we may consider an asymptotic solution, which is locally a plane wave, 
whose properties change on a length scale of O(e-l). Thus we let 

and seek a solution of the form 
X = BX, T = et (4.1) 

(4.2) v = V(X, T, 8) + 6(X, T; 8; E ) ,  

where the phase 8 is defined so that the local frequency w = - 8, and the local 
wavenumber K = V,8 are functions of X and T, and so are slowly varying. Thus 

8 = (I /&) O(X, T; e) (4.3) 

and w = -0  T, K = V @ .  (4.4) 

(In this and the next section all spatial and time derivatives are with respect to 
X and T.) As in Ej 2, 6 is to be periodic in 13 with period 27r and has zero mean. 
For the remaining variables we put 

a = eA(X,T)+a(X,T)sin8+ ..., (4.5) 

= B(X, T )  + b ( X ,  T) ~ 0 ~ 8  + ..., (4.6) 

y = C(X, T) +ec(X, T)sin 8+ ..., (4.7) 

6 = (I/€) D(X, T) +d(X, T) sin@+ ..., (4.8) 

45 = (l/e) @(X, T )  + (nb/K2) sin 8 - kab sin 28 - Cd sin 8 + . . . , (4.9) 

where the omitted terms are of a higher order with respect to E than the dis- 
played terms. The terms in q5 have been chosen to ensure that 6 . ~  is of O ( E ) ,  
in agreement with (3.8); it is not necessary to do this at this stage but use of (4.9) 
greatly simplifies the subsequent analysis. Clearly the 8 dependence of the solu- 
tion, to the lowest order in 8, will be exactly that described by the plane wave 
solution of the previous section. This fact has enabled us to omit various cos8 
and sin 8 terms from the expressions above. On substituting these expressions 
into (2.26) we find that 

V = Vq5 + CVD - Bk - 4abK + O(e2), 

6 = b C O S ~ ( ~ K / K ~ -  k) + O(s). 

(4.10) 

(4.11) 
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The solutions for y and 6, which could be ingored for the plane wave solution 
but must be included here, are most readily found by substituting (4.7) and (4.8) 
into (2.29). Averaging with respect to 8 gives 

c, + v .  VG = O ( E 2 ) ,  

D,+V.VD = 0 ( € 2 ) ,  

while c and d are given by 

w‘c = b(nu/K2 - k)  . VC + O(e), 
w’d = b(nu/K2 - k) . VD + O(e). 

(4.12) 

(4.13) 

These results confirm the form chosen for y and 6 in (4.7) and (4.8). Equation 
(4.12) shows that G and D are transported with the mean velocity V, while 
G and d are determined by the modulations of G and D transverse to K. 

The global behaviour (i.e. X, T dependence) of the remaining variables can also 
be determined by substitution into the exact equations. However, a simpler 
procedure is to use the averaged variational principle. It has been shown by 
Bisshopp (1969) and Whitham (1970) that if the exact equations of motion are 
the Euler equations of a Lagrangian, in this casep (see equation (2.20)), then the 
global behaviour of a modulated wave is determined from the averaged varia- 
tional principle 

6 ( p > d X d T  = 0, (4.14) s 
where (4.15) 

The variations in (4.14) are with respect to 0 and a, 6 etc. Remarkably, (4.14) 
is valid to all orders in e. Thus 

(P) = ( ~ o ( Z + c a ) ) +  (apo(z+€a))-(€~p,(Z+sa) Q) (4.16) 

and (Q)  = cD,+GD,+~IVlz+~wab+~b2(1 -n2 /~2)+O(s2) .  (4.17) 

The global behaviour of the modulated wave is now obtained from the varia- 
tion of (4.16) with respect to a, b, A ,  B, C ,  D, cD and 0. Thus we have 

w‘b = - N2a + O(s2) from 6a, (4.18) 

w ’ a  = - (1 - n 2 / K 2 )  b + O(G)  from 66, (4.19) 

V .k  = O(G)  from 6B, (4.20) 

V . V = O  from 6cD, (4.21) 

2KT + V .  [ F ( c  + V)] = O(e2) from 60, (4.22) 

where 9 is defined by (3.18). The variations 6C and 6D reproduce (4.13). The 
variation 6A involves higher order terms in Q than those displayed; it may be 
shown that 

N2A = N2(&)-&(N2)’a2-{BT+V.VB+V.[&b2(n~/~2-k)]}+O(s). (4.23) 

In  all these expressions N 2  = N 2 ( 2 ) .  Equations (4. is), (4.19) and (4.20) reproduce 
the local plane wave solution obtained in $3,  while (4.21), (4.22) and (4.13) 
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describe the global behaviour of the modulations. The equation for A uncouples 
from the other equations and need not concern us further. The set of equations 
which describe the global behaviour will be called the transport equations and 
are discussed in the next section. 

5. Transport equations 

omission of the error terms of O(e2),  
The transport equations derived in 3 4 are, with some simplifications and the 

w'2 = N2( 1 - n2//C2), (5.1) 

w' = w--KIT.V, (5.2) 

F T + 0 . [ F ( C + V ) ]  = 0, (5.3) 

vH.v = 0, (5.4) 

V = VHcD+GV,D+U, U = 9 / p o ~ H ,  (5 .5 )  

L@C/L@T = 9 D / 9 T  = 0, (5 .6 )  

where 3 1 9 ~  3 alaT + v . v,. (5.7) 

In these equations a subscript H denotes the horizontal component, so that, for 
example, V, E (a/aX,  a/aY, 0) and K~ = (I, m, 0). Equation (5 .3)  is the equation 
for conservation of wave action F and has been obtained previously for linearized 
internal gravity waves by Bretherton (1966) and Garrett (1968); equations like 
(5.3) have been discussed in a more general context by Bretherton & Garrett 
(1969). 

The mean velocity V is horizontal and non-divergent. It contains a wave- 
induced velocity U, which is a nonlinear term, being proportional t o  a2. The 
other terms in (5 .5 )  describe the transport of mean vorticity with the mean 
velocity. This is most readily seen by introducing the mean circulation 

v =  v.ax, J, (5 .8 )  

where l7 is a horizontal circuit moving with velocity V. Then (5.5) implies that 

%=yo+ u.ax, S, (5.9) 

where 

Vo is independent of time by (5.6), and is thus equal to the initial circulation 
(i.e. that due to the mean vorticity before the arrival of the waves). Equation 
(5.10) was obtained by Bretherton (1969), who considered small amplitude 
internal gravity waves. The present result contains no restriction on the amplitude 
a other than that we must be able to neglect the error terms O(e2a2) in comparison 
with the terms retained, which are O(a2) and O(a4) ;  we require, therefore, that 
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€2 4 a2, which is certainly satisfied if a is O(l) ,  for example. Equation (5 .5 )  
also implies that 

PO 9V/BT + V . (SC KH) = - VH 8, (5.11) 

where B = - (Po(&)+ $poN2a2) = --p0(9@/9T - 4IVl2) (5.12) 

is the averaged pressure perturbation, i.e. cl[p -p0 (2 ) ] .  Also 

P C K H  = (POVvH) (5.13) 

and is that component of the Reynolds stress which can exert a force in a 
horizontal direction. Equation (5.12) can also be obtained by averaging the 
momentum equation (2.3), and was obtained using this approach by Bretherton 
(1969) for small amplitude internal gravity waves. Bretherton (1969) gives a com- 
prehensive discussion of the physical interpretation of (5.9) and (5.11). Here we 
merely comment that the principal effect of the induced velocity U is the pro- 
duction of mean vorticity in the vicinity of a wave packet, a phenomenon 
succinctly described by (5.9). 

@ may be eliminated from (5.6) to give 

k.VXV = k.VXU-+k.VHCXVHD. (5.14) 

A further simplification is to introduce a stream function Y for V such that 

V = V x (Yk). (5.15) 

Equation (5.4) is now automatically satisfied and (5.14) becomes 

V & y +  (vH $/Po) I UH X k +  k.VHC X VHD = 0. (5.16) 

Equation (5.16) shows that in general (for exceptions see $55.2.2 and 5.3) the 
induced velocity affects the mean flow only when the wave packet is modulated 
in a horizontal direction which is perpendicular to uH. 

The dispersion equation (5. I)  is to be regarded as a partial differential equation 
for the phase 0, since w = -0, and K = V 0 .  However, it is often convenient 
to regard w and K as the primary dependent variables, in which case (5.1) is 
supplemented by the compatibility equations 

U,+VW = 0,  v x K = 0. (5.17) 

In  the remainder of this section the transport equations are analysed under 
various further hypotheses. 

5.1. Quasi-steady modulations 

This is the situation which arises when w ,  K, a and V are assumed to be functions of 
2 only. Equation (5.17) implies that w and uZl are constants. Clearly we may 
allow V = V(2) to be an arbitrary shear flow. Thus w’ can be regarded as a pre- 
scribed function of 2, and (5.1) determines n as a function of 2. The solution of 

W F  = constant, W = c. k, (5.18) 
(5.3) is 

and from (3.18) it follows that 

poa2w’(N2-w’2)6 = constant. (5.19) 
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The solution fails where w' = 0 and also where lw'l = N ;  Bretherton (1966) has 
discussed the nature of this breakdown in detail. Even when V and N are con- 
stant (5.19) shows that the amplitude a grows with height as p;B (cf. Drazin 
(1969), who obtained (5.20) for the case V = 0). 

5.2. (2, T)-dependent modulations 

5.2.1. Modulations supported by horizontal pressure gradients. We now suppose 
that w ,  u: a and V are functions of Zand T alone. Equations (5.4) and (5.5) impose 
no apparent restriction on V = V(Z,T) ,  which we therefore assume to be an 
arbitrary time-dependent shear flow. However (5.11) then implies that V, B is 
non-zero and the flow is supported by horizontal pressure gradients (this comment 
applies to § 5.1 as well); the case when there are no horizontal pressure gradients 
is examined in 3 5.2.2. In  the present case there are no nonlinear effects and the 
theory is identical to that for linearized internal gravity waves, described by 
Bretherton (1966). 

Equation (5.17) implies that K, is a constant and that 

nT+w,  = 0. 
From (5.2) we have 

awl 8V 
n,+ Wn,+-+uH.- = 0,  az az 

(5.20) 

(5.21) 

where W = c . k is the vertical component of the group velocity and is a known 
function of n and Z, and 8o'/aZ is the explicit derivative of w' with respect to 2 
through the dependence of w' on N 2 ( Z ) .  Equation (5.21) is a singleequation for n 
and is solved subject to the initial condition that at  T = 0, n = n,(Z). Equation 
(5.3) then becomes 

9 T + ( W 9 - ) Z = 0  (5.22) 

and, once n has been found, is a single equation for 9 with the initial condition 
that at T = 0 9 = 9-,(2). Equations (5.21) and (5.22) are most conveniently 
solved by the introduction of rays in terms of which (5.21) and (5.22) are reduced 
to a set of ordinary differential equations (Lighthill 1965). Thus n and 9 are 
envisaged as being propagated along the rays with the group velocity W ,  their 
values at  the level Z at time T being determined in terms of their values at the 
initial level 5 at time T = 0. We have 

dZ dT- - w ,  a=-  (g+UH.g), (5.23) 

with initial conditions Z = 5 and n = no(5). The solution of (5 .23)  is obtained as 
Z = Z(5, T ) ,  n = n(5, T )  and elimination of 5 gives n ( Z ,  T ) .  A useful relation in 
this context is 

dw aV 
dT = K H - z .  

is found by integrating 
d 9 / d T  = -9W,, 

(5.24) 

(5.25) 

where initially 9 = go(<); here W, is the partial derivative with respect to Z 
with T held fixed. 
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We shall illustrate this case by giving two examples, in both of which N 2  is 
a constant and V = pZi, where /3 is a constant and i is a unit vector in the X 
direction. First, let no be a constant. Then we find that 

n = no-l/3T, (5.26) 

where 
(5.27) 

Here K~ = I K ~ J ,  K~ is the initial value of K and & is the sign of W at T = 0. 
As T increases, K becomes infinite, ]n/KI approaches 1, and w f  and W tend to 
zero; the wave energy 8, which equah ~‘9, tends to zero with w f  and the wave 
packet is displaced vertically by an amount N K H / I Z ~ ~  K ~ .  The vertical shear has 
the effect of reducing the frequency and vertical scale of the waves, while their 
energy is transferred to the mean flow. Phillips (1969, $ 5 . 5 ) )  using a different 
approach and assuming a linearized theory, also obtained this solution and has 
discussed it in much more detail than will be given here. 

Second, let the initial condition be that w is a constant; then initially 
w‘ = w - ZPc and the initial value no(c) is then determined from (5.1). The critical 
level is thus 2 = d, where d = w(Q3-’. We find that 

0’ = Zp(d-2)) I 
so that 

If d, = NIZpl-l, then 

(5.28) 

(5.29) 

Here the choice of sign depends on whether the wave packet is propagating 
towards ( + ), or away from ( - ), the critical level. As T increases (assuming the 
sign to be plus) 

(5.30) 

and the group velocity W w - Z2p2(d - Z ) 2  ( N K ~ ) - ’ .  Thus the wave packet 
approaches the critical level with a decreasing velocity and will never reach it 
in a finite time; the wave action increases as T 2  and the wave energy as T. Thus 
within the wave packet the amplitude of the waves increases indefinitely. How- 
ever, if initially the wave packet has a finite length, L say, then as T increases 
the length decreases and is proportional to LT-2. The total wave action is 

(5.31) 

where the integral on the left-hand side is over the wave packet at time T and 
that on the right-hand side over the wave packet at time T = 0. Thus the total 
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wave action is conserved, a result which is consistent with (5.22). The total wave 
energy, however, is 

J & d Z  = Jo’&(5)dC (5.32) 

and so decreases like T-1 as T increases. This discussion of critical-layer absorp- 
tion is based on that given by Bretherton (1966) and may be compared satis- 
factorily with the numerical calculations of Houghton & Jones (1969). 

5.2.2. Modulations not supported by horizontal pressure gradients. As in 9 5.2.1, 
we suppose that o, u, a and V are functions of Z and T alone, and so uH is again 
a constant. Unlike the situation examined in $5.2.1,  however, it will now be 
assumed that there are no horizontal pressure gradients, and so the pressure 
perturbation B is also a function of Z and T alone. The term V, B in (5.11) is 
now zero, and (5.11) implies thus that 

pov, + UI*V. ( S c )  = 0. (5.33) 

Using (5.3) and (5.5) this simplifies to 

v, = u, = (%/PO)=%T. (5.34) 

Thus the development of the mean flow is entirely due to the nonlinear term U. 
The remaining equations are (5.1), (5.2), (5.20) and (5.22); the initial conditions 
at  T = 0 are n = n,(Z), P =  F,(Z) and V = Vo(Z). Unlike those in 9 5.2.1, these 
equations for n, 9 and V are inextricably coupled. 

Although we have been unable to make any further progress when the ampli- 
tude a is O( l), it is possible to develop a systematic perturbation procedure when a 
(and hence 9) is small. The first approximation is to replace V by Vo(Z) in (5.2) 
and then to solve (5.20) and (5.22); a t  this stage the solution procedure is the same 
as that given in $5.2.1.  With 9 found, (5.34) is then solved to give the second 
approximation for V; the new value of V is then substituted into (5.2) and the 
process repeated. This is essentially the procedure followed by Jones & Houghton 
(197 1) in a numerical experiment on the coupling of internal gravity waves with 
the mean flow. Our procedure may also be compared with the work of Lindzen & 
Holton (1968), whose procedure amounted to making an ad hoc assumption 
about the dependence of 9 on V. 

We shall again illustrate the situation by giving two examples, in both of 
which N 2  is a constant and V = PZi. First, let n, be a constant; then the first 
approximation is given by (5.26) and (5.27). Equation (5.34) then implies that 
the second approximation for V is 

(5.35) 

where 5 is given by (5.27). As T + co 

llPl 12-51 + N K H I K O ,  (5.36) 

where K~ is the initial value of K .  Thus the ultimate effect of the nonlinear terms 
is to alter the vertical structure of the shear flow, described by the equation 
obtained by substituting (5.36) into (5.36). For example, if uo, the initial value 
of a,  is a constant then as T --f co 

(5.37) 
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where wh is the initial value of w' and the & sign is that of W at T = 0;  in this 
case the nonlinear correction is simply a uniform velocity. 

Second, let the initial condition be that w is a constant; then initially 
or = w - lpc, and the first approximation is given by (5.28) and (5.29). Equation 
(5.34) then implies that the second approximation for V is 

(5.38) 

where 5 is given by (5.29). In this case the nonlinear correction is confined at  all 
times to the vicinity of the wave packet, and as T - t m  the wave packet 
approaches the critical level z = d and decreases in length as T-2. The total 
nonlinear term produced by the wave packet is, as T -+ 00, 

(5.39) 

where the integral is over the wave packet. Both these examples may be com- 
pared with the numerical experiment of Jones & Houghton (1971)) in which 
internal gravity waves are continually generated at  one level and propagate 
upwards to be absorbed at  the critical level; the mean flow profile is continually 
enhanced in a band centred around the critical level. 

5.3. Two-dimensional modulations 

We now suppose that w ,  K, a and V are functions of X ,  Z and T only, and also that 
V = V i  and K~ = li; thus the entire motion is confined to planes perpendicular 
to the Y axis. Equation (5.3) implies that V = V(2, T )  and equation (5.5) (or 
equation (5.14)) imposes no further restriction on V. However (5.11) becomes 

poV, + v . (Flc) = - Yx (5.40) 

and, if it is assumed that the wave packet is confined to a, bounded region, 
poV, = - Yx in the region outside the wave packet. Thus either the wave packet 
is supported by a horizontal pressure gradient or V, = 0 in the region outside 
the wave packet. The case when V = 0 everywhere has been discussed by 
Bretherton (1969). 

5.4. Small amplitude modulations 

In  the absence of any special geometrical symmetries, we shall consider only the 
case of small perturbations to the quasi-steady modulations (described in 9 5.1). 
We let the subscript zero denote the quasi-steady modulation described by the 
phase O,, stream function Yo and wave action F,, where 

w, = - OOT, K, = VO,, V, = V x (Tok) (5.41) 

are, like F,, functions of Z only. The perturbations 0, Y and So are defined by 

O = O , + O ,  Y=Y,+Y, S=F,+S. (5.42) 

C and D are already perturbed quantities, as their counterparts in the quasi- 
steady solution, C, and Do, are identically zero. When (5.42) is substituted into 

A h  

h h A 
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(&I), (5.3) and (5.16), and thesubsequentequationsfor0, Y and Farelinearized, 
we find that 

A h  h 

h A A 

(5.43) I 0 = OT + (c, + V,) . V O  + k x K ~ .  V Y ,  
A A 

0 = ST + (c,  + V,) . V F + % V .  ? + 9&(?. k - ?V&@/%), 

Here c, is the group velocity for the quasi-steady modulation, viz. V,,w& and is 
given by (3.19); W, = c0 . k; and 2 is the perturbed group velocity and is given by 

(5.44) 

The set (5.43) is a set of linear equations for 0, Y? and @. However, they are 
inhomogeneous equations as the coefficients So etc. are functions of 2. We are 
thus prevented from seeking exponential solutions and hence determining the 
stability of the quasi-steady solution. We adopt, therefore, the criterion pro- 
posed by Whitham (1967)) in the context of water waves, andassociate instability 
with the existence of imaginary characteristics for (5.43). However, instead of 
directly seeking the characteristics of (5.43), we shall adopt the equivalent 
procedure of seeking an asymptotic solution to (5.43) which is rapidly varying 
with respect to the X, T co-ordinates, although still slowly varying with respect 
to the x, t co-ordinates. Thus we put 

A A 

O =  V&Y?+(l/p,)V#.K,Xk. 

A h  

C = ( K .  vK0)  C,. 
A h  

(5.45) 

where ,u is a small parameter such that E is o(p) and the asymptotic solution holds 
as ,u -+ 0. The local frequency CT and the local wavenumber vector v of this 
asymptotic solution are given by 

0- = -BT, v = vs. (5.46) 

Equation (5.45) has been constructed such that the derivatixes of O and %" 
are O(1) as ,u -+ 0,  while the derivatives of Lj, 2, v^ (i.e. V x (Yk)) and 9 are 
O(p-l). When (5.45) is substituted into (5.43) and the terms of O(p-l) equated to 
zero, we find that 

A 

A 

h A 

0 = {- CT+ (cO+Vo) .v} 0, + (v.  k x KO)'€'',, 

(5.47) 
a2w; A 

0 = - s,vivi - 0, f { - u + (c,  +v,) . v }  is1, 
A 

aKOa a K o i  

0 = - &Y1 + (v. k x KO) iFJp0. 

Here the vi, i = 1,2 ,3 ,  are the components of v, the K,~, i = 1,2,3,  are the corn- 
ponents of K~ and vH = vZ,+v& For a non-trivial solution the determinant of 
(5.47) must vanish, and so 

(5.48) 
9, (v .  k x a%; { - ~ + ( c , + v , ) . v ) 2 =  -- v.v.-. 
Po v k  a aK%aK,j 
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For instability this equation will have complex solutions for CT for real v, so the 
criterion for instability is that the right-hand side of (5.48) be positive, i.e 

(5.49) 

The first condition requires v to be perpendicular to both k and K ~ ,  while the 
second condition implies that 

(5.50) 

where vL is the component of v perpendicular to the plane of k and K,,. Thus there 
will be instability for large enough values of v1; when v . c = 0, there will be 
instability for any non-zero value of vI. Finally, it  may be observed that the 
right-hand side of (5.48) is proportional to So and would vanish for a linearized 
internal gravity wave; the instability criterion is therefore due to the nonlinear 
aspects of the wave. 
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